Notation

N	The set of all	natural numbers	{1.2.3}
10	The set of an	natural numbers	(1,2,0, j

- \mathbb{Z} The set of all integers
- \mathbb{Q} The set of all rational numbers
- \mathbb{R} The set of all real numbers
- S_n The group of permutations of *n* distinct symbols
- \mathbb{Z}_n {0, 1, 2, ..., n 1} with addition and multiplication modulo n

 ϕ empty set

 A^T Transpose of A

$$i \sqrt{-1}$$

 $\hat{i}, \hat{j}, \hat{k}$ unit vectors having the directions of the positive *x*, *y* and *z* axes of a three dimensional rectangular coordinate system

$$\nabla \qquad \hat{\imath}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}$$

- *I*_n Identity matrix of order *n*
- ln logarithm with base *e*

SECTION – A

MULTIPLE CHOICE QUESTIONS (MCQ)

Q. 1 – Q.10 carry one mark each.

Q.1 The sequence $\{s_n\}$ of real numbers given by

$$s_n = \frac{\sin\frac{\pi}{2}}{1\cdot 2} + \frac{\sin\frac{\pi}{2^2}}{2\cdot 3} + \dots + \frac{\sin\frac{\pi}{2^n}}{n\cdot (n+1)}$$

is

(A) a divergent sequence(B) an oscillatory sequence(C) not a Cauchy sequence(D) a Cauchy sequence

Q.2 Let *P* be the vector space (over \mathbb{R}) of all polynomials of degree ≤ 3 with real coefficients. Consider the linear transformation $T: P \rightarrow P$ defined by

$$T(a_0 + a_1x + a_2x^2 + a_3x^3) = a_3 + a_2x + a_1x^2 + a_0x^3$$

Then the matrix representation M of T with respect to the ordered basis $\{1, x, x^2, x^3\}$ satisfies

- (A) $M^2 + I_4 = 0$ (B) $M^2 - I_4 = 0$ (C) $M - I_4 = 0$ (D) $M + I_4 = 0$
- Q.3 Let $f: [-1, 1] \rightarrow \mathbb{R}$ be a continuous function. Then the integral

$$\int_{0}^{\pi} x f(\sin x) \, dx$$

is equivalent to

(A) (B)

$$\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) dx$$
 (B)
(C) (D)
 $\pi \int_{0}^{\pi} f(\cos x) dx$ (D)
 $\pi \int_{0}^{\pi} f(\sin x) dx$

- Q.4 Let σ be an element of the permutation group S_5 . Then the maximum possible order of σ is
 - (A) 5 (B) 6 (C) 10 (D) 15
- Q.5 Let *f* be a strictly monotonic continuous real valued function defined on [a, b] such that f(a) < a and f(b) > b. Then which one of the following is TRUE?
 - (A) There exists exactly one $c \in (a, b)$ such that f(c) = c
 - (B) There exist exactly two points $c_1, c_2 \in (a, b)$ such that $f(c_i) = c_i$, i = 1, 2
 - (C) There exists no $c \in (a, b)$ such that f(c) = c
 - (D) There exist infinitely many points $c \in (a, b)$ such that f(c) = c

Q.6 The value of
$$\lim_{(x, y) \to (2, -2)} \frac{\sqrt{(x-y)}-2}{x-y-4}$$
 is
(A) 0 (B) $\frac{1}{4}$ (C) $\frac{1}{3}$ (D) $\frac{1}{2}$

Q.7 Let $\vec{r} = (x \hat{\imath} + y \hat{\jmath} + z \hat{k})$ and $r = |\vec{r}|$. If $f(r) = \ln r$ and $g(r) = \frac{1}{r}$, $r \neq 0$, satisfy $2 \nabla f + h(r) \nabla g = \vec{0}$, then h(r) is

(A) r (B) $\frac{1}{r}$ (C) 2r (D) $\frac{2}{r}$

Q.8 The nonzero value of *n* for which the differential equation

$$(3xy^2 + n^2x^2y)dx + (nx^3 + 3x^2y) dy = 0, \quad x \neq 0,$$

becomes exact is

(A) -3 (B) -2 (C) 2 (D) 3

Q.9 One of the points which lies on the solution curve of the differential equation

$$(y-x)dx + (x+y)dy = 0,$$

with the given condition y(0) = 1, is

(A) (1, -2) (B) (2, -1) (C) (2, 1) (D) (-1, 2)

Q.10 Let *S* be a closed subset of \mathbb{R} , *T* a compact subset of \mathbb{R} such that $S \cap T \neq \phi$. Then $S \cap T$ is

- (A) closed but not compact
- (B) not closed
- (C) compact
- (D) neither closed nor compact

Q. 11 – Q. 30 carry two marks each.

Q.11 Let *S* be the series

$$\sum_{k=1}^{\infty} \frac{1}{(2k-1) \ 2^{(2k-1)}}$$

and T be the series

$$\sum_{k=2}^{\infty} \left(\frac{3k-4}{3k+2}\right)^{\frac{(k+1)}{3}}$$

of real numbers. Then which one of the following is TRUE?

(A) Both the series *S* and *T* are convergent

(B) *S* is convergent and *T* is divergent

(C) S is divergent and T is convergent

(D) Both the series S and T are divergent

Q.12 Let $\{a_n\}$ be a sequence of positive real numbers satisfying

$$\frac{4}{a_{n+1}} = \frac{3}{a_n} + \frac{a_n^3}{81}, \qquad n \ge 1, \ a_1 = 1.$$

Then all the terms of the sequence lie in

(A)
$$\left[\frac{1}{2}, \frac{3}{2}\right]$$
 (B) $[0, 1]$ (C) $[1, 2]$ (D) $[1, 3]$
The largest eigenvalue of the matrix $\begin{bmatrix} 1 & 4 & 16 \\ 4 & 16 & 1 \end{bmatrix}$ is

Q.13
The largest eigenvalue of the matrix
$$\begin{bmatrix} 1 & 4 & 16 \\ 4 & 16 & 1 \\ 16 & 1 & 4 \end{bmatrix}$$
 is

Q.14 The value of the integral

$$\frac{(2n)!}{2^{2n} (n!)} \int_{-1}^{1} (1-x^2)^n dx, \qquad n \in \mathbb{N}$$

is

(A)
$$\frac{2}{(2n+1)!}$$
 (B) $\frac{2n}{(2n+1)!}$

(C)
$$\frac{2(n!)}{2n+1}$$
 (D) $\frac{(n+1)!}{2n+1}$

Q.15 If the triple integral over the region bounded by the planes

$$2x + y + z = 4$$
, $x = 0$, $y = 0$, $z = 0$

is given by

$$\int_{0}^{2} \int_{0}^{\lambda(x)} \int_{0}^{\mu(x,y)} dz \, dy \, dx$$

then the function $\lambda(x) - \mu(x, y)$ is

(A)
$$x + y$$
 (B) $x - y$ (C) x (D) y

Q.16 The surface area of the portion of the plane y + 2z = 2 within the cylinder $x^2 + y^2 = 3$ is

(A)
$$\frac{3\sqrt{5}}{2}\pi$$
 (B) $\frac{5\sqrt{5}}{2}\pi$ (C) $\frac{7\sqrt{5}}{2}\pi$ (D) $\frac{9\sqrt{5}}{2}\pi$

Q.17 Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{xy^2}{x+y} & \text{if } x+y \neq 0\\ 0 & \text{if } x+y = 0 \end{cases}$$

Then the value of $\left(\frac{\partial^2 f}{\partial x \, \partial y} + \frac{\partial^2 f}{\partial y \, \partial x}\right)$ at the point (0,0) is (A) 0 (B) 1 (C) 2 (D) 4

Q.18 The function $f(x, y) = 3x^2y + 4y^3 - 3x^2 - 12y^2 + 1$ has a saddle point at (A) (0, 0) (B) (0, 2) (C) (1, 1) (D) (-2, 1)

Q.19 Consider the vector field $\vec{F} = r^{\beta}(y\,\hat{\imath} - x\hat{\jmath})$, where $\beta \in \mathbb{R}$, $\vec{r} = x\hat{\imath} + y\hat{\jmath}$ and $r = |\vec{r}|$. If the absolute value of the line integral $\oint_c \vec{F} \cdot d\vec{r}$ along the closed curve $C: x^2 + y^2 = a^2$ (oriented counter clockwise) is 2π , then β is

Q.20 Let S be the surface of the cone $z = \sqrt{x^2 + y^2}$ bounded by the planes z = 0 and z = 3. Further, let C be the closed curve forming the boundary of the surface S. A vector field \vec{F} is such that $\nabla \times \vec{F} = -x\hat{\imath} - y\hat{\jmath}$. The absolute value of the line integral $\oint_c \vec{F} \cdot d\vec{r}$, where $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ and $r = |\vec{r}|$, is (A) 0 (B) 9π (C) 15π (D) 18π

Q.21 Let y(x) be the solution of the differential equation

$$\frac{d}{dx}\left(x\frac{dy}{dx}\right) = x; \quad y(1) = 0, \quad \frac{dy}{dx}\Big|_{x=1} = 0.$$

$$(B)\frac{3}{4} - \frac{1}{2}\ln 2$$

(C)
$$\frac{3}{4} + \ln 2$$
 (D) $\frac{3}{4} - \ln 2$

Q.22 The general solution of the differential equation with constant coefficients

$$\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$

approaches zero as $x \to \infty$, if

Then y(2) is

 $(A)\frac{3}{4} + \frac{1}{2}\ln 2$

- (A) b is negative and c is positive
- (B) b is positive and c is negative
- (C) both b and c are positive
- (D) both b and c are negative

- Q.23 Let $S \subset \mathbb{R}$ and ∂S denote the set of points x in \mathbb{R} such that every neighbourhood of x contains some points of S as well as some points of complement of S. Further, let \overline{S} denote the closure of S. Then which one of the following is FALSE?
- Q.24 The sum of the series

is

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 + n - 2}$$

- (A) $\frac{1}{3}\ln 2 \frac{5}{18}$ (B) $\frac{1}{3}\ln 2 \frac{5}{6}$ (C) $\frac{2}{3}\ln 2 \frac{5}{18}$ (D) $\frac{2}{3}\ln 2 \frac{5}{6}$
- Q.25 Let $f(x) = \frac{1}{1+|x|} + \frac{1}{1+|x-1|}$ for all $x \in [-1, 1]$. Then which one of the following is TRUE? (A) Maximum value of f(x) is $\frac{3}{2}$
 - (B) Minimum value of f(x) is $\frac{1}{3}$
 - (C) Maximum of f(x) occurs at $x = \frac{1}{2}$
 - (D) Minimum of f(x) occurs at $x = 1^2$
- Q.26 The matrix $M = \begin{bmatrix} \cos \alpha & \sin \alpha \\ i \sin \alpha & i \cos \alpha \end{bmatrix}$ is a unitary matrix when α is (A) $(2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$ (B) $(3n+1)\frac{\pi}{3}, n \in \mathbb{Z}$ (C) $(4n+1)\frac{\pi}{4}, n \in \mathbb{Z}$ (D) $(5n+1)\frac{\pi}{5}, n \in \mathbb{Z}$
- Q.27 Let $M = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & \alpha \\ 2 & -\alpha & 0 \end{bmatrix}$, $\alpha \in \mathbb{R} \setminus \{0\}$ and **b** a non-zero vector such that $M\mathbf{x} = \mathbf{b}$ for some $\mathbf{x} \in \mathbb{R}^3$. Then the value of $\mathbf{x}^T \mathbf{b}$ is (A) $-\alpha$ (B) α (C) 0 (D) 1
- Q.28 The number of group homomorphisms from the cyclic group \mathbb{Z}_4 to the cyclic group \mathbb{Z}_7 is
 - (A) 7 (B) 3 (C) 2 (D) 1
- Q.29 In the permutation group S_n ($n \ge 5$), if H is the smallest subgroup containing all the 3-cycles, then which one of the following is TRUE?

(A) Order of *H* is 2 (B) Index of *H* in S_n is 2 (C) *H* is abelian (D) $H = S_n$ Q.30 Let $f: \mathbb{R} \to \mathbb{R}$ be defined as

$$f(x) = \begin{cases} x(1+x^{\alpha}\sin(\ln x^2)) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Then, at x = 0, the function f is

- (A) continuous and differentiable when $\alpha = 0$
- (B) continuous and differentiable when $\alpha > 0$
- (C) continuous and differentiable when $-1 < \alpha < 0$
- (D) continuous and differentiable when $\alpha < -1$

SECTION - B

MULTIPLE SELECT QUESTIONS (MSQ)

Q. 31 – Q. 40 carry two marks each.

Q.31 Let $\{s_n\}$ be a sequence of positive real numbers satisfying

$$2 \, s_{n+1} = s_n^2 + \frac{3}{4}, \qquad n \ge 1$$

If α and β are the roots of the equation $x^2 - 2x + \frac{3}{4} = 0$ and $\alpha < s_1 < \beta$, then which of the following statement(s) is(are) TRUE ?

(A) $\{s_n\}$ is monotonically decreasing (B) $\{s_n\}$ is monotonically increasing (C) $\lim_{n\to\infty} s_n = \alpha$

(D) $\lim_{n\to\infty} s_n = \beta$

Q.32 The value(s) of the integral

$$\int_{-\pi}^{\pi} |x| \cos nx \, dx \, , \ n \ge 1$$

is (are)

(A) 0 when *n* is even
(B) 0 when *n* is odd
(C)
$$-\frac{4}{n^2}$$
 when *n* is even
(D) $-\frac{4}{n^2}$ when *n* is odd

Q.33 Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{xy}{|x|} & \text{if } x \neq 0\\ 0 & \text{elsewhere} \end{cases}$$

Then at the point (0, 0), which of the following statement(s) is(are) TRUE ?

- (A) f is not continuous
- (B) f is continuous
- (C) f is differentiable
- (D) Both first order partial derivatives of f exist
- Q.34 Consider the vector field $\vec{F} = x\hat{\imath} + y\hat{\jmath}$ on an open connected set $S \subset \mathbb{R}^2$. Then which of the following statement(s) is(are) TRUE ?
 - (A) Divergence of \vec{F} is zero on S
 - (B) The line integral of \vec{F} is independent of path in *S*
 - (C) \vec{F} can be expressed as a gradient of a scalar function on S
 - (D) The line integral of \vec{F} is zero around any piecewise smooth closed path in S
- Q.35 Consider the differential equation

$$\sin 2x \ \frac{dy}{dx} = 2y + 2\cos x$$
, $y\left(\frac{\pi}{4}\right) = 1 - \sqrt{2}$.

Then which of the following statement(s) is(are) TRUE?

- (A) The solution is unbounded when $x \to 0$
- (B) The solution is unbounded when $x \rightarrow \frac{\pi}{2}$
- (C) The solution is bounded when $x \to 0$
- (D) The solution is bounded when $x \to \frac{\pi}{2}$
- Q.36 Which of the following statement(s) is(are) TRUE?
 - (A) There exists a connected set in \mathbb{R} which is not compact
 - (B) Arbitrary union of closed intervals in \mathbb{R} need not be compact
 - (C) Arbitrary union of closed intervals in \mathbb{R} is always closed
 - (D) Every bounded infinite subset V of \mathbb{R} has a limit point in V itself
- Q.37 Let $P(x) = \left(\frac{5}{13}\right)^x + \left(\frac{12}{13}\right)^x 1$ for all $x \in \mathbb{R}$. Then which of the following statement(s) is(are) TRUE?
 - (A) The equation P(x) = 0 has exactly one solution in \mathbb{R}
 - (B) P(x) is strictly increasing for all $x \in \mathbb{R}$
 - (C) The equation P(x) = 0 has exactly two solutions in \mathbb{R}
 - (D) P(x) is strictly decreasing for all $x \in \mathbb{R}$

- Q.38 Let G be a finite group and o(G) denotes its order. Then which of the following statement(s) is(are) TRUE?
 - (A) *G* is abelian if o(G) = pq where *p* and *q* are distinct primes
 - (B) G is abelian if every non identity element of G is of order 2
 - (C) G is abelian if the quotient group $\frac{G}{Z(G)}$ is cyclic, where Z(G) is the center of G
 - (D) G is abelian if $o(G) = p^3$, where p is prime

Q.39

Consider the set $V = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \mid \alpha x + \beta y + z = \gamma, \ \alpha, \beta, \gamma \in \mathbb{R} \right\}$. For which of the

following choice(s) the set V becomes a two dimensional subspace of \mathbb{R}^3 over \mathbb{R} ?

- (A) $\alpha = 0, \ \beta = 1, \ \gamma = 0$ (B) $\alpha = 0, \ \beta = 1, \ \gamma = 1$ (C) $\alpha = 1, \ \beta = 0, \ \gamma = 0$ (D) $\alpha = 1, \ \beta = 1, \ \gamma = 0$
- Q.40 Let $S = \left\{ \frac{1}{3^n} + \frac{1}{7^m} \right| \quad n, m \in \mathbb{N} \right\}$. Then which of the following statement(s) is(are) TRUE?

(A) S is closed
(B) S is not open
(C) S is connected
(D) 0 is a limit point of S

SECTION – C

NUMERICAL ANSWER TYPE (NAT)

Q. 41 – Q. 50 carry one mark each.

Q.41 Let $\{s_n\}$ be a sequence of real numbers given by

$$s_n = 2^{(-1)^n} \left(1 - \frac{1}{n}\right) \sin \frac{n\pi}{2}, \qquad n \in \mathbb{N}.$$

Then the least upper bound of the sequence $\{s_n\}$ is _____

Q.42 Let
$$\{s_k\}$$
 be a sequence of real numbers, where

$$s_k = k^{\alpha/k}, \quad k \ge 1, \quad \alpha > 0.$$
$$\lim_{n \to \infty} \left(s_1 \ s_2 \ \dots \ s_n \right)^{1/n}$$

Then

is

Q.43 Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3$ be a non-zero vector and $A = \frac{\mathbf{x} \mathbf{x}^T}{\mathbf{x}^T \mathbf{x}}$. Then the dimension of the vector space $\left\{ \mathbf{y} \in \mathbb{R}^3 \mid A\mathbf{y} = \mathbf{0} \right\}$ over \mathbb{R} is ______

Q.44 Let f be a real valued function defined by

$$f(x, y) = 2 \ln \left(x^2 y^2 e^{\frac{y}{x}} \right), \qquad x > 0, y > 0.$$

Then the value of $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$ at any point (x, y), where x > 0, y > 0, is _____

Q.45 Let $\vec{F} = \sqrt{x} \hat{\iota} + (x + y^3)\hat{j}$ be a vector field for all (x, y) with $x \ge 0$ and $\vec{r} = x\hat{\iota} + y\hat{j}$. Then the value of the line integral $\int_C \vec{F} \cdot d\vec{r}$ from (0, 0) to (1, 1) along the path C: $x = t^2$, $y = t^3$, $0 \le t \le 1$ is ______

Q.46 If $f: (-1, \infty) \to \mathbb{R}$ defined by $f(x) = \frac{x}{1+x}$ is expressed as

$$f(x) = \frac{2}{3} + \frac{1}{9}(x-2) + \frac{c(x-2)^2}{(1+\xi)^3},$$

where ξ lies between 2 and x, then the value of c is _____

Q.47 Let $y_1(x)$, $y_2(x)$ and $y_3(x)$ be linearly independent solutions of the differential equation

$$\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0.$$

If the Wronskian $W(y_1, y_2, y_3)$ is of the form ke^{bx} for some constant k, then the value of b is_____

Q.48 The radius of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(-4)^n}{n(n+1)} (x+2)^{2n} \text{ is } ____$$

Q.49 Let $f: (0, \infty) \to \mathbb{R}$ be a continuous function such that

$$\int_{0}^{x} f(t)dt = -2 + \frac{x^{2}}{2} + 4x \sin 2x + 2 \cos 2x.$$

Then the value of $\frac{1}{\pi} f\left(\frac{\pi}{4}\right)$ is ______

Q.50 Let *G* be a cyclic group of order 12. Then the number of non-isomorphic subgroups of *G* is ______

Q. 51 – Q. 60 carry two marks each.

Q.51
The value of
$$\lim_{n \to \infty} \left(8n - \frac{1}{n}\right)^{\frac{(-1)^n}{n^2}}$$
 is equal to _____

Q.52 Let *R* be the region enclosed by $x^2 + 4y^2 \ge 1$ and $x^2 + y^2 \le 1$. Then the value of

$$\iint_R |xy| \, dx \, dy \quad \text{is} \underline{\qquad}$$

Q.53 Let

$$M = \begin{bmatrix} \alpha & 1 & 1 \\ 1 & \beta & 1 \\ 1 & 1 & \gamma \end{bmatrix}, \ \alpha\beta\gamma = 1, \ \alpha, \beta, \gamma \in \mathbb{R} \text{ and } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3.$$

Then Mx = 0 has infinitely many solutions if trace(M) is _____

Q.54 Let *C* be the boundary of the region enclosed by $y = x^2$, y = x + 2, and x = 0. Then the value of the line integral

$$\int_C (xy-y^2)dx-x^3dy,$$

where *C* is traversed in the counter clockwise direction, is _____

9

Q.55 Let S be the closed surface forming the boundary of the region V bounded by $x^2 + y^2 = 3$, z = 0, z = 6. A vector field \vec{F} is defined over V with $\nabla \cdot \vec{F} = 2y + z + 1$. Then the value of

$$\frac{1}{\pi}\iint\limits_{S}\vec{F}\cdot\hat{n}\,ds,$$

where \hat{n} is the unit outward drawn normal to the surface *S*, is ______,

Q.56 Let y(x) be the solution of the differential equation

$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0, \qquad y(0) = 1, \qquad \frac{dy}{dx}\Big|_{x=0} = -1.$$

Then y(x) attains its maximum value at x = _____

Q.57 The value of the double integral

$$\int_{0}^{\pi} \int_{0}^{x} \frac{\sin y}{\pi - y} \, dy \, dx$$

- is _____
- Q.58 Let *H* denote the group of all 2×2 invertible matrices over \mathbb{Z}_5 under usual matrix multiplication. Then the order of the matrix $\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ in *H* is ______
- Q.59 Let $A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 5 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ -1 & 0 \\ 3 & 1 \end{bmatrix}$, N(A) the null space of A and R(B) the range space of B. Then the dimension of $N(A) \cap R(B)$ over \mathbb{R} is ______
- Q.60 The maximum value of $f(x, y) = x^2 + 2y^2$ subject to the constraint $y x^2 + 1 = 0$ is _____

END OF THE QUESTION PAPER