# **SECTION – A**

## MULTIPLE CHOICE QUESTIONS (MCQ)

## Q. 1 – Q.10 carry one mark each.

Q.1 The correct order of pKa for the following compounds is

















(D)





Ph ∠Ph

(D)



Q.3 The mechanism of the following transformation involves HO OH NaOH  $H_2O$ ΗÓ OH (excess) (A) Aldol reaction and Cannizzaro reaction (B) Aldol reaction and Claisen-Schmidt reaction (C) Knoevenagel condensation and Cannizzaro reaction (D) Stobbe condensation and Cannizzaro reaction **O**.4 The most basic amino acid among the following is (A) tyrosine (B) methionine (C) arginine (D) glutamine The crystal field stabilization energy (CFSE) in  $[Mn(H_2O)_6]^{2+}$  is Q.5 (A)  $0 \Delta_0$ (B)  $2.0 \Delta_0 - 2P$ (C)  $0.4 \Delta_0 - 2P$ (D) 2.0 Δ<sub>0</sub> Q.6 Indicator used in redox titration is (A) Eriochrome black T (B) Methyl orange (C) Phenolphthalein (D) Methylene blue Q.7 Among the following, the compound that has the lowest degree of ionic character is (A) NaCl (B) MgCl<sub>2</sub> (C) AlCl<sub>3</sub> (D) CaCl<sub>2</sub> Q.8 The correct order of entropy for various states of CO<sub>2</sub> is (A)  $CO_2(s) > CO_2(l) > CO_2(g)$ (B)  $CO_2(l) > CO_2(s) > CO_2(g)$ (C)  $CO_2(g) > CO_2(l) > CO_2(s)$ (D)  $CO_2(g) > CO_2(s) > CO_2(l)$ 0.9 The coordination numbers of Cs<sup>+</sup> and Cl<sup>-</sup> ions in the CsCl structure, respectively, are (A) 4,4 (B) 4.8 (C) 6,6 (D) 8,8 **O**.10 Determinant of a square matrix is always (B) a column matrix (A) a square matrix (C) a row matrix (D) a number

## Q. 11 – Q. 30 carry two marks each.

Q.11 The correct order of <sup>1</sup>H NMR chemical shift ( $\delta$ ) values for the labeled methyl groups in the following compound is



 $\begin{array}{l} (A) \ Me^1 < Me^2 < Me^3 < Me^4 \\ (B) \ Me^3 < Me^4 < Me^1 < Me^2 \\ (C) \ Me^3 < Me^1 < Me^4 < Me^2 \\ (D) \ Me^2 < Me^4 < Me^3 < Me^1 \end{array}$ 

Q.12 Among the following, the most stable conformation of meso-2,3-dibromobutane is



Q.13 The major products **X** and **Y** in the following reaction sequence are



Q.14 The major product formed in the reaction of butanenitrile with phenylmagnesium bromide followed by acidification is



Q.15 An organic compound on reaction with 2,4-dinitrophenylhydrazine (2,4-DNP) gives a yellow precipitate. It also gives silver mirror on reaction with ammoniacal AgNO<sub>3</sub>. It gives an alcohol and sodium salt of a carboxylic acid on reaction with concentrated NaOH. It yields benzene-1,2-dicarboxylic acid on heating with alkaline KMnO<sub>4</sub>. The structure of the compound among the following is



Q.16 The major products **X** and **Y** in the following reaction sequence are



| Q.17 | The TRUE statement about $[Cu(H_2O)_6]^{2+}$ is                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |            |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------|--|--|--|
|      | <ul> <li>(A) All Cu–O bond</li> <li>(B) One Cu–O bond</li> <li>(C) Three Cu–O bond</li> <li>(D) Four Cu–O bond</li> </ul>                                                               | lengths are equal<br>length is shorter than<br>d lengths are shorter<br>d lengths are shorter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | In the remaining five<br>r than the remaining t<br>than the remaining tw | hree<br>vo |  |  |  |
| Q.18 | The complexes $[Pt(CN)_4]^{2-}$ and $[NiCl_4]^{2-}$ , respectively, are                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |            |  |  |  |
|      | <ul> <li>(A) paramagnetic, paramagnetic</li> <li>(B) diamagnetic, diamagnetic</li> <li>(C) paramagnetic, diamagnetic</li> <li>(D) diamagnetic, paramagnetic</li> </ul>                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |            |  |  |  |
| Q.19 | The value of 'x' in $[Cu(CO)_x]^+$ such that it obeys the 18 electron rule is                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |            |  |  |  |
|      | (A) 6                                                                                                                                                                                   | (B) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (C) 4                                                                    | (D) 3      |  |  |  |
| Q.20 | The correct order of $v_{NO}$ (cm <sup>-1</sup> ) in the following compounds is                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |            |  |  |  |
|      | (A) $NO^+ > NO > [Ni]$<br>(B) $[Cr(Cp)_2(NO)_4]$<br>(C) $NO^+ > [Cr(Cp)_2(O)_4]$<br>(D) $[NiCp(NO)] > N$                                                                                | $iCp(NO)] > [Cr(Cp) > [NiCp(NO)] > NC (NO)_4] > NO > [NiC NO)_4] > NO > [NiC NO)_4] > [Cr(Cp)_2(NO)_4]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2(NO)_4]$<br>$P^+ > NO$<br>P(NO)]<br>$P^+ > NO^+$                       |            |  |  |  |
| Q.21 | The red color of ruby is due to                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |            |  |  |  |
|      | <ul> <li>(A) d-d transition of</li> <li>(B) d-d transition of</li> <li>(C) ligand to metal c</li> <li>(D) metal to metal c</li> </ul>                                                   | $Cr^{3+}$ ion in $Cr_2O_3$ la $Cr^{3+}$ ion in $Al_2O_3$ la charge transfer transfe | ttice<br>ttice<br>ition<br>tion                                          |            |  |  |  |
| Q.22 | The final products in                                                                                                                                                                   | The final products in the reaction of BF <sub>3</sub> with water are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |            |  |  |  |
|      | (A) $B(OH)_3$ and $OF_2$<br>(B) $H_3BO_3$ and $HBF$<br>(C) $B_2O_3$ and $HBF_4$<br>(D) $B_2H_6$ and $HF$                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |            |  |  |  |
| Q.23 | The correct order of bond angles in BF <sub>3</sub> , NH <sub>3</sub> , NF <sub>3</sub> and PH <sub>3</sub> is                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |            |  |  |  |
|      | (A) $BF_3 > NH_3 > NH_3 > NH_3$<br>(B) $PH_3 > BF_3 > NF_3$<br>(C) $BF_3 > PH_3 > NH_3$<br>(D) $NH_3 > NF_3 > BH_3$                                                                     | $r_3 > PH_3$<br>$r_3 > NH_3$<br>$r_3 > NF_3$<br>$r_3 > PH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |            |  |  |  |
| Q.24 | The maximum of a function $Ae^{-ax^2}$ (A > 0; a > 0) is at x =                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |            |  |  |  |
|      | (A) 0<br>(C) – ∞                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (B) + $\infty$<br>(D) $1/\sqrt{a}$                                       |            |  |  |  |
| Q.25 | At 298 K, 0.1 mol of ammonium acetate and 0.14 mol of acetic acid are dissolved in 1 L of wate<br>The <i>p</i> H of the resulting solution is<br>[Given: $pK_a$ of acetic acid is 4.75] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |            |  |  |  |

(A) 4.9 (B) 4.6 (C) 4.3 (D) 2.3

| Q.26 | An electrochemical cell consists of two half-cell reactions<br>$AgCl(s) + e^- \rightarrow Ag(s) + Cl^-(aq)$<br>$Cu(s) \rightarrow Cu^{2+}(aq) + 2e^-$<br>The mass of copper (in grams) dissolved on passing 0.5 A current for 1 hour is<br>[Given: atomic mass of Cu is 63.6; F = 96500 C mol <sup>-1</sup> ] |               |                                                       |                   |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------|-------------------|--|--|
|      | (A) 0.88                                                                                                                                                                                                                                                                                                      | (B) 1.18      | (C) 0.29                                              | (D) 0.59          |  |  |
| Q.27 | For a zero order reaction, the half-life depends on the initial concentration $[C_0]$ of the reactant as                                                                                                                                                                                                      |               |                                                       |                   |  |  |
|      | (A) $[C_0]$                                                                                                                                                                                                                                                                                                   | (B) $[C_0]^0$ | (C) $[C_0]^{-1}$                                      | (D) $[C_0]^{1/2}$ |  |  |
| Q.28 | The effective nuclear charge of helium atom is 1.7. The first ionization energy of helium atom in eV is                                                                                                                                                                                                       |               |                                                       |                   |  |  |
|      | (A) 13.6                                                                                                                                                                                                                                                                                                      | (B) 23.1      | (C) 39.3                                              | (D) 27.2          |  |  |
| Q.29 | The relationship between the van der Waals 'b' coefficient of $N_2$ and $O_2$ is                                                                                                                                                                                                                              |               |                                                       |                   |  |  |
|      | (A) $b(N_2) = b(O_2) = 0$<br>(C) $b(N_2) > b(O_2)$                                                                                                                                                                                                                                                            |               | (B) $b(N_2) = b(O_2) \neq 0$<br>(D) $b(N_2) < b(O_2)$ |                   |  |  |
| Q.30 | From the kinetic theory of gases, the ratio of most probable speed ( $C_{mp}$ ) to root mean square speed                                                                                                                                                                                                     |               |                                                       |                   |  |  |

 $(C_{\rm rms})$  is

| (A) $\sqrt{3}$ | (B) $\sqrt{2}/\sqrt{3}$ | (C) $\sqrt{3}/\sqrt{2}$ | (D) $3/\sqrt{2}$ |
|----------------|-------------------------|-------------------------|------------------|
|                |                         |                         |                  |

#### **SECTION - B**

#### MULTIPLE SELECT QUESTIONS (MSQ)

## Q. 31 – Q. 40 carry two marks each.

Q.31 The correct statement(s) about the following species is(are)



- (A) I and II are resonance structures
- (B) II and III are resonance structures

(C) II and III are diastereomers

(D) III is a tautomer of I

Q.32 Consider the following reaction:

Among the following, the compound(s) whose osazone derivative(s) will have the same melting point as that of  $\mathbf{X}$  is(are)

(A)



Q.33 The appropriate reagents required for carrying out the following transformation are



(A) (i) PCC, CH<sub>2</sub>Cl<sub>2</sub>; (ii) Ph<sub>3</sub>P=CHCO<sub>2</sub>Et; (iii) aq. NaOH, heat, then acidify
(B) (i) CrO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, aq. acetone (ii) Ac<sub>2</sub>O, NaOAc
(C) (i) MnO<sub>2</sub>; (ii) CH<sub>2</sub>(CO<sub>2</sub>H)<sub>2</sub>, piperidine, pyridine
(D) (i) PCC, CH<sub>2</sub>Cl<sub>2</sub>; (ii) BrCH<sub>2</sub>CO<sub>2</sub>C(CH<sub>3</sub>)<sub>3</sub>, Zn (iii) H<sub>3</sub>O<sup>+</sup>, heat

Q.34 The appropriate reagents required for carrying out the following transformation are



## SECTION – C

#### NUMERICAL ANSWER TYPE (NAT)

#### Q. 41 – Q. 50 carry one mark each.

Q.41 Among the following, the number of molecules that are aromatic is \_\_\_.



- Q.42 The number of all possible isomers for the molecular formula  $C_6H_{14}$  is \_\_\_\_.
- Q.43 Hydrolysis of 15.45 g of benzonitrile produced 10.98 g of benzoic acid. The percentage yield of acid formed is \_\_\_.
- Q.44 Acetic acid content in commercial vinegar was analyzed by titrating against 1.5 M NaOH solution. A 20 mL vinegar sample required 18 mL of titrant to give endpoint. The concentration of acetic acid in the vinegar (in mol  $L^{-1}$ ) is \_\_\_.
- Q.45 The bond order of Be<sub>2</sub> molecule is \_\_\_.
- Q.46 The number of P–H bonds in hypophosphorus acid is \_\_\_.
- Q.47 The isotope  ${}^{214}_{84}$ Po undergoes one alpha and one beta particle emission sequentially to form an isotope "X". The number of neutrons in "X" is \_\_\_.
- Q.48 In a diffraction experiment with X-rays of wavelength 1.54 Å, a diffraction line corresponding to  $2\theta = 20.8^{\circ}$  is observed. The inter-planar separation in Å is \_\_\_.
- Q.49 The potential energy of interaction between two ions in an ionic compound is given by  $U = 1389.4 \left[ \frac{Z_1 Z_2}{r/\text{Å}} \right] \text{kJ mol}^{-1}$ . Assuming that CaCl<sub>2</sub> is linear molecule of length 5.6 Å, the potential energy for CaCl<sub>2</sub> molecule in kJ mol<sup>-1</sup> is \_\_\_.
- Q.50 The enthalpy of formation for  $CH_4(g)$ , C(g) and H(g) are -75, 717 and 218 kJ mol<sup>-1</sup>, respectively. The enthalpy of the C–H bond in kJ mol<sup>-1</sup> is \_\_\_.

#### Q. 51 – Q. 60 carry two marks each.

- Q.51 Specific rotation of the (*R*)-enantiomer of a chiral compound is 48. The specific rotation of a sample of this compound which contains 25% of (*S*)-enantiomer is \_\_\_\_.
- Q.52 Among the following, the number of compounds, which can participate as '**diene**' component in a Diels-Alder reaction is \_\_\_.



Q.53 Among the following, the number of molecules that possess  $C_2$  axis of symmetry is \_\_\_\_.



- Q.54 Effective nuclear charge for 3d electron in vanadium (atomic number = 23) according to Slater's rule is \_\_\_.
- Q.55 The total number of isomers possible for the molecule  $[Co(NH_3)_4Cl(NO_2)]^+$  is \_\_\_\_.
- Q.56 The bond angle in PBr<sub>3</sub> is 101°. The percent 's' character of the central atom is \_\_\_\_.
- Q.57  $\operatorname{Cu}(s) + 4 \operatorname{H}^+(aq) + 2\operatorname{NO}_3^-(aq) \rightarrow 2\operatorname{NO}_2(g) + \operatorname{Cu}^{2+}(aq) + 2\operatorname{H}_2\operatorname{O}(l)$ In the above reaction at 1 atm and 298 K, if 6.36 g of copper is used. Assuming ideal gas behavior, the volume of NO<sub>2</sub> produced in liters is \_\_\_\_. [Given: atomic mass of Cu is 63.6; R = 0.0821 L atm K<sup>-1</sup> mol<sup>-1</sup>]

Q.58 The  $\Delta H^o$  for the reaction  $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$  at 400 K in kJ mol<sup>-1</sup> is \_\_\_\_. Given at 298 K:

|        | $\Delta H_f^o$       | $C_p^o$                             |
|--------|----------------------|-------------------------------------|
|        | kJ mol <sup>-1</sup> | $J \text{ mol}^{-1} \text{ K}^{-1}$ |
| $O_2$  | 0                    | 29.4                                |
| CO     | -110                 | 29.1                                |
| $CO_2$ | -394                 | 37.1                                |

- Q.59 The rate constants for a reaction at 300 and 350 K are 8 and 160 L mol<sup>-1</sup> s<sup>-1</sup>, respectively. The activation energy of the reaction in kJ mol<sup>-1</sup> is \_\_\_. [Given  $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ ]
- Q.60 A 10 L flask containing 10.8 g of N<sub>2</sub>O<sub>5</sub> is heated to 373 K, which leads to its decomposition according to the equation  $2 N_2O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$ . If the final pressure in the flask is 0.5 atm, then the partial pressure of O<sub>2</sub>(g) in atm is \_\_\_\_. [Given R = 0.0821 L atm K<sup>-1</sup> mol<sup>-1</sup>]

# END OF THE QUESTION PAPER